Humanoid Chess Player

Bjorn Franzon 811107-4871
quack@etek.chalmers.se
January 8, 2006 Gothenburg

Autonomous Agents FFR125 and
Humanoid Robots FFR155
Complex Adaptive Systems

Chalmers University of Technology

Abstract

Humanoid robots are knocking on the door to our world as this project of building a
robot that look, act and play chess as a human. The robot is built in the same size as a
human and is able to recognize the opponent’s move, calculate a new move and point out
the move to the opponent. The robot is able to beet a beginner in chess, sensitive to light
and misses a piece with a maximum of three centimeters. Economy and time often had to
govern what solution to take. This project shows that building robots for smaller tasks are
possible with today’s technology and I believe we soon can see a humanoid chess player in
the stores.

Contents

8

9

2.1 Mechanics
2.2 Electronics
23 Chessboard

Introduction
Design
Control

3.1 Model
3.2 Calibration

Image Processing

Chess Computer

51 Rules.
5.2 Graphics. o oo
53 Opponent

The Brain

Results

Discussion

Conclusion

10 Future Work

11 Thanks

A Appendix: Code

B Appendix: Components

= e

ot ot Ot

oo oo oo QO

10

10

10

10

10

11

12

1 Introduction

Humanoid robots have not yet become every man property but in just a few years there are no
doubt that will change. The thought of applications where a robot would come in handy are
starting grow in peoples mind and one important role that the robots will have is to be a good
friend and play with us. The goal of this project is to:

“Build a humanoid robot that can play chess against humans.”

The reason of choosing to build a humanoid chess player is that the project involves many
different fields that have to be synchronized in order to work. An important aspect is that the
robot should be able to adapt as much as possible to our world instead of the opposite, which
often is the case of today’s robots. When I started this project I had problems knowing how far
I would get and how much time different parts would take to work.

2 Design

2.1 Mechanics

To be able to build a robot that can play chess and look human the body is made in the same
size as a human and only consists of the upper half of a human. To keep a low weight and stable
construction the body is made of aluminum. The body is lending forward to make it look more
natural when the camera is placed right above the chess board and also for the arm reach further
without hitting the stomach. The bottom of the robot is made of wood with an extra weight to
prevent the robot from falling forward. Figure 1 shows the design of the robot.

(a) Overview of robot (b) Starting position (¢) Upper arm

Figure 1: Different view of the robot

2.2 Electronics

The only parts that are able to move are the servos which are controlled by a servo controller
card. The servo controller card signal is pulse width modulated in order to tell the servos what
angle and speed to use. The servos get there current from one source and the servo controller
card from another to not have impact on each other. The servo controller card gets a message
signal from the computer via the serial (or com) port but has to be transformed from 12 volt to
5 volt (max255) first. The electrical components are shown in Figure 2 and also listed in Table
3 in components Appendix.

somma Current stabilizer

Q‘

4 rter
Computer

Source

Figure 2: Electrical components

2.3 Chess board

The chess board is 30x30 cm and all 16 black pieces has an extra tape around them and all 16
of the white pieces has an extra black tape around them. The tape is there in order to make the
image processing easier.

3 Control
3.1 Model

The arm consists of the two limbs upper and under arm which are able to move because of the
servos. The upper arm is able to move in a half circle and the under arm in half a sphere. To be
able to move the hand to a specific piece the angles for the servos needs to be calculated from a
Cartesian coordinate system build from the chess board, this is also called the inverse kinematics.
The inverse kinematics in this simple example with three degrees of freedom [1] was found in the
geometry in Figure 1 and because of the limitations in the rotation only one solution for each
position is possible. In the right part of Figure 3 P_0 is the shoulder and P_2 is the hand and
because those are fix P_1 can only be at a point where the two circles meet.

(a) 2D-Model of robot (b) 3D-Model of robot

Figure 3: Two pictures of the mathematical model, to the left x-y-z and to the right y-z (different
examples in the figure)

RUnder = L%fnder + P22:c (1)
Distp,p, = \/(P()y — Py))2 4+ (P, — Poy)? (2)
RUpper = LUpper (3)

The final inverse kinematics can be seen in the equations below.

Py, — P R2,_ + Dist? p, — R?
Servol = = 4 arctan(*u) + arccos(Upper PoP2 Under (4)
2 POy - ng 2. RUpper ' D'LStPOP2
R2 + D28t2 — R2 R2 + D28t2 _ R2
Servo2 = arccos(Upper Fol2 U"der) + arccos(Under Fol2 Upper 15)
2. RU;Dper . D’Lstpopg 2. RUnder . DZStP0P2
R
Servo3d = arctcm(i) (©6)

RUnder

3.2 Calibration

Before the inverse kinematics angles could be sent to the real servos they need to be transformed
and tested against the real system. Some of the calibrated parameters are arm lengths, servo
angles and position of the web camera. The web camera is also sensitive to direction and light
intensity to make the image processing work.

4 Image Processing

For the robot to be able to analyze the game a web camera is used as an eye [1]. The reason for
choosing a web camera is because it is cheap, small and easy to implement in a running program.
An image is captured every second with the format 320x240 and each pixel is stored as a gray
scale integer value between 0 and 255. An example of how the image processing works can be
seen in Figure 4 where 4(c) and 4(d) has a darker version of the input image in the background
to show the result.

(a) Input image (b) Chess square filter

(c) Symmetric filter (d) Chess board location

Figure 4: Image Processing

The first step in the image processing is to use the chess square filter which was found by
trail and error. The filter can be seen in Table 1 and it is used together with its transpose in the
function ”conv2” in Matlab (see Figure 4(b) for the result).

The next step is to set all pixels that are above a given threshold to one value (white) and
the rest to another (black). White pixels that are close to each other are then reduced to only
one white pixel. After this the mean distance to the closest white pixel are calculated and if one
of the white pixels deviate to much from this mean value that one is taken away. The next step
is to check if more than at least four white pixels, some might be missing, stay in the same width
as well as four at the same height with a small deviation. The result of the symmetric filter is
shown in Figure 4(c).

11 1 -1 -1 -1
1 1 1 -1 -1 -1
1 1 1 -1 -1 -1
-1 -1 -1 1 1 1
-1 -1 -1 1 1 1
-1 -1 -1 1 1 1

Table 1: Chess square filter

The chess board location is than found by just adding another layer of squares outside the
seven rows and the seven columns that are left (see Figure 4(d)). If the image processing found
more or less than seven rows or columns a fault message is sent back to tell that the image
processing failed to detect the chess board.

The final task for the image processing is to find the pieces in the calculated squares. In order
to make it simple the image processing only detects if a piece is placed inside a square and if
that piece is black or white. Another thing that was made to make the image processing simpler
was that all pieces were given an extra bit of tape, black tape to white pieces and vise versa.
The reason with the tape is that an edge detecting filter and a threshold can detect if a piece
is placed in a square or not even if a black piece is placed in a black square or white in a white
square. The edge detection filter used in the piece detection part is seen in Table 2.

1 2 1
0 0 0
-1 -2 -1

Table 2: Edge detection filter

5 Chess Computer

The chess computer is divided into one class that handles the rules, one that display the game
in a graphical interface and one that play as an opponent. A snapshot from the game is shown
in Figure 4.

Figure 5: Snapshot from the graphical interface for the chess computer

5.1 Rules

The rules of chess are simple and one state could be described by just knowing whose turn it
is, if the kings still can make castling and of course where the different pieces are placed on the
board. Different pieces can move in different direction and with different length and by being
able to take your opponents king without the opponent being able to prevent you from doing so
is the only way to win or vise versa to lose. If the person that has to move can not move and is
not in check or if no one can win with the pieces that are left the game ends as a draw.

5.2 Graphics

The graphics interface display a given game state and tell if a player is in check and if the game
is over. The graphics can also be controlled from the web camera or by a mouse click to play a
game between two humans or against the chess computer with or without the robot connected.

5.3 Opponent

The chess computer uses the rules class to find all valid moves. Each move are then given points
depending on how good they are and what the opponent could do if this move is made. The
algorithm is a so called minimax method [1] which minimizes the opponent maximum move. The
chess computer also has a few stored openings which it randomly selects from in the beginning
of every game.

6 The Brain

The robot is controlled by one thread so it always finishes one task before starting another. The
only thing that the robot keep in mind at all time is the actual game state so it has to start the
image processing and chess computer all over every time. The limitation in speed lies in keeping
a stable movement of the arm and in the image transfer from the web camera to the computer.
An information flow diagram is shown in Figure 6. Everything is implemented using Matlab 7.0
except the chess computer which is implemented in Java.

Figure 6: Information flow

7 Results

It is difficult to know how much time it takes to build a real robot rather than just simulating
one in a computer. For a smaller project like this one the economy often had to govern what
solution to take. The servo controller card is sensitive to large current changes as when the arm
is working hard or when the power is turned on. The mathematical model was simplified in order
to get easier calculations and servo expressions. After calibration of the chess board location the
mathematical model missed the correct position with a maximum of 3cm. The image processing
is sensitive to chosen web camera resolution, light intensity as well as shadows falling on the
chess board. The chess computer is able to beet a beginner in chess.

8 Discussion

This project clearly shows that building robots for smaller tasks are possible with today’s tech-
nology. The reason why robots have not yet reached the market could be that we here in Europe
are a bit frightened of the term robot. I think robots will become a market of the same size as
the car industry and that it is just a question of time before we can find singing, board game
playing, vacuum cleaning and home help service robots in the stores.

9 Conclusion

Because there are only 64 squares in a chess game it is possible to keep the chess board at a
specific distance from the robot and by that hard code each position in order to get a better
precision.The chess square filter works well if the entire chess board is shown in about 250x250
pixels, so if the resolution changes the implemented image processing probably fail to find the
table. There are also many thresholds that are set by hand which makes the detection sensitive
to the light intensity. The image processing could be improved to detect different pieces by a
more advanced algorithm or by using different markings to each type of piece but that would be
a lot more difficult to achieve. The edge detection method is sensitive to shadows which makes
it hard to find a working illumination.

10 Future Work

For the robot to function as a humanoid chess player it needs to be able to lift the pieces and
hopefully doing that in a human like way. The preferred solution is to lift the pieces by grasping
fingers. A not so human like but easier way would be to use electro magnets, but this would
mean that the pieces must be modified which should be avoided if possible. One thing that has
to be done before the robot could function properly is to reach all pieces. This could be done by
placing an extra servo in the shoulder of the robot. A commercial ”humanoid chess player” could
have an inbuilt computer, loudspeakers for talking ability and a nice design with soft materials
and a human like head.

11 Thanks

I would specially like to thank my good friend Almir Heralic who made the whole project possible
for me to carry out. Also I would like to thank my teachers Krister Wolff and Anders Eriksson
for there help.

10

A Appendix: Code

% Some useful Matlab code for serial port, webcamera, java and servo control

main.m

% Starting the serial port

if(1) % O if serialport aready active
init_serialport;
if ("isvalid(serial_port))

error(’Serial Port not connected’);

end

else
serial_port = instrfind;

end

% Connecting a web camera (Matlab 7.0 is required)
vid = videoinput(’winvideo’, 1);

preview(vid);

% get image from webcam

I1 = getsnapshot(vid) ;

% from rgb to gray

I=im2double(rgb2gray (I1))*255;

% Connecting Matlab to JAVA
javaclasspath({’..\chess_comp’});
CR=javaObject (’ChessRules’);
CR.printGame;

% Moving the robot arm to a specific point

P_1 = [20, 40, 10]; % point with vaues for x-y-z

S=invers(P_1); % Calculate the invers kinematict for the servo angles
ramp=17; J "Rampage" Set speed of movement

S_CARD_P0S=[1,3,5]; % Servo number on the servo controller card
moveRobot (serial_port, S_CARD_POS(1), ramp, S(1)); % Move first servo
moveRobot (serial_port, S_CARD_P0S(2), ramp, S(2)); % Move second servo
moveRobot (serial_port, S_CARD_P0S(3), ramp, S(3)); % Move third servo

get_bytes.m

% Transform a value to byte form

function [lowbyte_decimal, highbyte_decimal] = get_bytes(value)
binvector = dec2binvec(value,16);

lowbyte = binvector(1:8);

highbyte = binvector(9:16);

lowbyte_decimal = binvec2dec(lowbyte);

highbyte_decimal = binvec2dec(highbyte);

moveRobot.m

% Write to the serial port to send information to the servo controller card
function moveRobot(serial_port, servo_nr, ramp, position)

[lowbyte, highbytel=get_bytes(position);

fwrite(serial_port, char(23,83,67,servo_nr,ramp,lowbyte,highbyte,13)’);

11

B Appendix: Components

Product Name Bought From Article Number
Voltage Source Power Supply 3-12 V. BILTEMA 38-114

Voltage Source Voltage Adapter BILTEMA 38-110

Servo BMS-380 MAX MFET BMS-380 MAX
Servo BMS-620MG MFT BMS-620MG
Servo Controller Card Parallax ELFA 73-196-07

12V / 5V Converter MAX232 ELFA 73-023-26

Voltage Regulator 7805 ELFA 73-262-75

Digital Web Camera Creative SIBA N10225

Aluminium Material

Metallvaruhuset AB

Table 3: Components

12

References

[1] Stuart Russell and Peter Norvig, Artificial Intelligence A Modern Approach. Prentice Hall,
New Jersey, Second Edition, 2003, page 165 863-874 904.

13

